1			$y=4 x+10$ $(0,10)$ or ft $(-10 / 4,0)$ oe or ft	B3 B1 B1 [5]	M1 for $y=4 x+b$ oe and M1 for $y-6=$ their $a(x+1)$ oe or for $(-1,6)$ subst in $y=($ their $a) x+b$ oe or M1 for $y=a x+10$ condone $y=10$ isw condone $x=-10 / 4$ isw	condone lack of brackets and eg $y=10, x=-2.5$ or ft isw but $\mathrm{B} 0, \mathrm{SC} 1$ for poor notation such as $(-2.5,10)$ with no better answers seen Throughout the scheme, note that for evaluated rational answers, unless specified otherwise, fractional or decimal equivalents are acceptable, but not triple-decker fractions etc; integer answers must be simplified to an integer

3			midpt M of $\mathrm{AB}=\left(\frac{1+6}{2}, \frac{5-1}{2}\right)$ oe isw soi subst of their midpt into $y=2 x-5$ and attempting to evaluate all work correct and 'Yes' oe	M1 M1 A1 [3]	condone lack of brackets; accept in the form $x=7 / 2$ oe, $y=2$ oe eg $2 \times$ their $3.5-5=$ their result accept $2=2 \times 3.5-5$	alt methods: allow $2^{\text {nd }}$ M1 for finding correct eqn of AB as $y=-\frac{6 x}{5}+\frac{31}{5}$ oe and attempting to solve as simult eqn with $y=2 x-5$ for x or y or allow M1 for finding in unsimplified form the eqn of the line through their midpt with gradient 2 and A1 for showing it is $y=2 x-5$, so Yes

5	(i)		midpt of $\mathrm{AB}=\left(\frac{1}{2}, \frac{5}{2}\right)$ oe www $\operatorname{grad} \mathrm{AB}=\frac{4-1}{3-(-2)}$ oe using gradient of AB to obtain grad perp bisector $y-2.5=\frac{-5}{3}(x-0.5) \mathrm{oe}$	B2 M1 M1 M1 M1	allow unsimplified B1 for one coordinate correct must be obtained independently of given line; accept 3 and 5 correctly shown eg in a sketch, followed by $3 / 5$ M 1 for rise/run $=3 / 5 \mathrm{etc}$ M0 for just $3 / 5$ with no evidence for use of $m_{1} m_{2}=-1$ soi or ft their gradient AB M0 for just $\frac{-5}{3}$ without $A B$ grad found eg M1 for $y=\frac{-5}{3} x+c$ and subst of midpt; ft their gradient of perp bisector and midpt; M0 for just rearranging given equation	if working shown, should come from $\left(\frac{3+-2}{2}, \frac{4+1}{2}\right)$ oe NB B0 for x coord. $=\frac{5}{2}$, (obtained from subtraction instead of addition) for those who find eqn of AB first, M 0 for just $\frac{y-4}{1-4}=\frac{x-3}{-2-3}$ oe, but M1 for $y-4=\frac{1-4}{-2-3}(x-3)$ oe ignore their going on to find the eqn of AB after finding grad AB this second M1 available for starting with given line $=\frac{-5}{3}$ and obtaining grad. of AB from it no ft for gradient of AB used

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \& \& completion to given answer $3 y+5 x=10$, showing at least one interim step \& M1

[6] \& \begin{tabular}{l}
condone a slight slip if they recover quickly and general steps are correct (eg sometimes a slip in working with the c in $y=\frac{-5}{3} x+c$ - condone $3 y=-5 x+c$ followed by substitution and consistent working) \\
M0 if clearly 'fudging'

 \&

NB answer given; mark process not answer; annotate if full marks not earned eg with a tick for each mark earned \\
scores such as B2M0M0M1M1 are possible \\
after B2, allow full marks for complete method of showing given line has gradient perp to $A B(\operatorname{grad} A B$ must be found independently at some stage) and passes through midpt of $A B$
\end{tabular} \\

\hline 5 \& (ii) \& \& | $3 y+5(4 y-21)=10$ |
| :--- |
| $(-1,5)$ or $y=5, x=-1$ isw | \& | M1 |
| :--- |
| A2 |
| [3] | \& | or other valid strategy for eliminating one variable attempted eg $\frac{-5}{3} x+{ }_{3}^{10}=\frac{x}{4}+{ }_{4}^{21}$; condone one error |
| :--- |
| A1 for each value; if AO allow SC 1 for both values correct but unsimplified fractions, eg $\left(\frac{-23}{23}, \frac{115}{23}\right)$ | \& | or eg $20 y=5 x+105$ and subtraction of two eqns attempted |
| :--- |
| no ft from wrong perp bisector eqn, since given |
| allow M1 for candidates who reach $y=115 / 23$ and then make a worse attempt, thinking they have gone wrong |
| NB M0A0 in this part for finding E using info from (iii) that implies E is midpt of CD | \\

\hline
\end{tabular}

				showing that both C and D are on circle and commenting that E is on CD is enough for last M1M1; similarly showing $\mathrm{CD} \mathrm{D}^{2}=68$ and both C and D are on circle oe earns last M1M1	other methods exist, eg: may find eqn of circle with centre E and through C or D and then show that A and B and other of C/D are on this circle - the marks are then earned in a different order; award M1 for first fact shown and then final M1 for completing the argument;
if part-marks earned, annotate with a tick for each mark earned beside where earned					

$\mathbf{6}$		$y=-2 x+7$ isw $(0,7)$ and $(3.5,0)$ oe or ft their $y=-2 x+c$	2 1	M1 for $y-1=-2(x-3)$ or $1=-2 \times 3+c$ oe	condone lack of brackets and eg $y=7$, $x=3.5$ or ft isw but 0 for poor notation such as (3.5, 7) and no better answers seen

